(一)項目背景
微電子領域遵循摩爾定律飛速發展,伴隨晶體管集成度的不斷提高,高速電子器件的熱密度已達1000W/cm2,散熱已經成為其發展的主要“瓶頸”,傳統的強制風冷已經無法滿足這些需求。因此,需要結構緊湊、換熱效率高的冷卻設備。小型通道液冷換熱器因其傳熱面積大、結構緊湊而受到廣泛研究,成為未來換熱器發展趨勢。微通道換熱器性能的好壞,直接影響到電子芯片或其他電子產品的使用性能甚至使用安全。微通道換熱器底板溫度均勻性直接影響到微通道換熱器的性能。因此,如何提高微通道換熱器底板溫度均勻性是迫切需要解決的問題。
(二)項目簡介
項目負責人及其團隊具有多年換熱器流道設計經驗,目前已完成數十種不同類型液冷換熱器設計研究。其中部分換熱器投入項目使用,經實踐證明本團隊設計的液冷換熱器散熱能力極佳,能夠對高熱流密度熱源實現出色的電子芯片/鋰離子電池控溫效果。
(三)關鍵技術
實驗室經過拓撲優化,仿生學,遺傳算法等方式進行流道設計,可以對高熱流密度熱源下實現很好的控溫效果。
(1)基于結構化設計理論的新型換熱器結構設計:例如課題組提出的一種新型換熱器:采用截斷及匯流等通道,增加流道內流體擾動性,從而強化換熱器散熱效果。如圖1所示為傳統結構換熱器,圖2為交錯雙P型微通道換熱器結構。經過仿真實驗驗證,交錯通道結構換熱器散熱效果優于傳統結構換熱器。
圖 1 傳統結構換熱器
圖 2 交錯雙 P 型微通道換熱器
(2)流動工質:基于液態金屬設計出短流道換熱器。
圖3 基于液態金屬的T-Y型微通道換熱器
(3)結合仿生學理念,利用拓撲優化方法,先后設計仿生拓撲換熱器, 例如仿蜘蛛網拓撲優化設計,仿蜂窩拓撲優化換熱器等。圖4為仿蜘蛛網結構換熱器,圖5為仿蜂窩結構換熱器。
圖4 仿蜘蛛網拓撲優化換熱器
圖5 仿蜂窩拓撲優化換熱器
(4)多學科交叉共融,將拓撲優化和鋰離子電池一維生熱模型相耦合,設計了性能更優的換熱器。項目組對電化學進行研究,如圖6所示,給出了P2D電化學模型。圖7為用于鋰離子電池散熱的拓撲優化換熱器結構。
圖6 P2D電化學模型
圖7 鋰離子電池的拓撲優化換熱器
目前已有諸多換熱器樣品,如圖8,圖9所示為換熱器實物圖。
圖8 仿蜘蛛網換熱器實物圖
圖9 基于多目標拓撲優化換熱器
概念驗證、原理樣機、工程樣機
掃碼關注,查看更多科技成果