近期,數學科學學院青年教師鈕維生和陳昌昊分別與合作者在偏微分方程均勻化理論、Weyl和度量理論等理論數學研究領域取得新進展,相關論文連續發表于數學領域國際頂尖學術期刊Mathematische Annalen。上述兩項進展均以安徽大學為第一完成單位。
偏微分方程均勻化理論在材料科學,特別是復合材料領域具有重要的應用價值。國際上諸多一流數學家致力于該問題的研究。鈕維生教授與合作者創新地引入了尺度分離方法以及重周期方法,來處理一般不滿足分離性條件的多尺度周期震蕩橢圓算子的均勻化定量理論,并針對不同情形建立了震蕩算子的一致正則性估計,為一般多尺度周期均勻化定量理論的研究提供了新的工具和視角。相應結果以“Compactness and stable regularity in multiscale homogenization”為題在Mathematische Annalen在線發表。
Weyl和是一類三角級數和,是由著名數學家H.Weyl在1916年研究序列模1分布時引入。Weyl和在微分方程、調和分析,特別在解析數論領域發揮重要作用。近年來,在測度論框架下Weyl和漸近估計的研究受到了廣泛關注。陳昌昊教授與合作者結合丟番圖方程與調和分析,給出了幾乎處處Weyl和的最佳下界估計;并且對于Weyl和相關例外集,通過構造正則的康托子集,得到了相關例外集的Hausdorff維數下界估計。相關結果以“Metric theory of Weyl sums”為題在Mathematische Annalen在線發表。